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Abstract. 'We propose a few implementations of the Alternating Direction Method for solving
parabolic partial differential equations on multiprocessors. A careful complexity analysis of these
implementations shows that, contrary to what is generally believed, the method can be made
highly efficient on parallel architectures by using pipelining and variations of the classical Gaussian
elimination algorithm for solving tridiagonal systems.
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1. Introduction
We pronose a few implementations of the Alternating Direction Method for solving parabolic

partial differential equations on multiprocessors. A careful complexity analysis of these implemen-
tations shows that, contrary to what is generally believed, the method can be made highly efficient
on parallel architectures by using pipelining and variations of the classical Gaussian elimination
algorithm for solving tridiagonal systems.

2. The Alternating Direction Method and its parallel implementations

We consider the partial differential equation:

a U - (a (xy) au) + a- (b(x, y) au)

on the domain (x, y, t) E 0 x [0, TJ - [0, 11 x [0, 1] x [0, T], with the initial and boundary conditions:

u(x,y,o) = uo(x,y), V(x,y) E fl,

u(X, ) = g(, (t) , ) V aa1, t>o,

where Ofl is the boundary of the unit square Q.

A common approach to solve the above problem is the Alternating Direction Method. First
the equations are discretized with respect to the space variables x and y using a mesh of n + 1
points in each direction. The result is the system of N _= n2 ordinary differential equations:

du = A u + B,,, (2.1)
dt -

in which the matrices A_ and By represent the 3-point central difference approximations to the
operators -(a(x, y) '-)4) and -% (b(x, y) 3_)) respectively.

The Alternating Direction Method algorithm consists in stepping (2.1) forward in time alter-
nately in the x and y directions as follows [41:

( At.4,)u+- = (I+ -,tB,)u (2.2)
2 211 ;+

(I- - AtB)u -- (I+ -AtAx)u+ 1. (2.3)K2 2
We observe that if the mesh points are ordered by lines in the x direction, then (2.2) constitutes

" a set of n independent tridiagonal systems whose solution is perfectly parallellizable. However.
(2.3) constitutes one tridiagonal system in which the nonzero diagonals are the main diagonal and
the (n + 1)" super- and sub-diagoi als. It is important to note that this second system can also
be recast into a set of n independei t tridiagonal systems by reordering the grid points by lines.
this time in the y direction. This essentially amounts to transposing the matrix representing the
solution at the n x n grid points and is an expensive data permutation operation which is often
cited as the main drawback of Alternating Direction Method in regard to its implementation on
parallel machines. The other difficulty that has been traditionally associated with parallelizing the
Alternating Direction Method is that the classical algorithms for solving tridiagonal systems are
sequential in nature. Varioui parallel implementations of the Alternate Direction Method have
been discussed by Gannon ai 'I Van Rosendale [11 Lambiotte [2] and Ortega and Voigt [3].
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Since it is the tridiagonal systems that are usually troublesome, we will consider the costs of
only the two tridiagonal system solutions in (2.2) and (2.3). On a single processor each half step
costs 5n 2 operations for the forward and 3n 2 operations for the backward sweep. Assuming that
s arithmetic operations can be done per second, the time for a half step on a single processor is
approximately

Sn 2

T, = 8 . (2.4)

3. Alternating Direction Methods on the shared memory model and the broadcast bus model

In this section, we assume that k processors are connected to one large shared memory with
"* total bandwidth B words per second and start up r. Moreover, we assume that the I/O bandwidth

• -of each processor is b. Thus B/b different processors can simultaneously access the shared memory.

The transfer of data between two processors is done by the first processor writing to the shared
memory and then the second processor reading from the shared memory. Consider a method
consisting in solving n/k similar tridiagonal systems in each processor for (2.2) then transposing
the data and solving (2.3) as n/k tridiagonal systems in each processor (it is assumed that k < n).
The total time required for performing the arithmetic operations of one half step is approximately

n 8n 8n 2

TSAruh j - =ks ks

Performing a transpose of the n x n matrix of the unknown u requires the communication
time:

Ts,comm 2

b n
, 2k-r + 2-.

B B
Hence in the shared memory model, it takes a total time of

b n2  8n 2

Ts 2k-r+ 2-+ -
B B ks

to perform one half step of the Alternating Direction Method.

Assume now that all k processors are linked to each other via a global bus which allows for
broadcasting. The time to perform the arithmetic operations is the same as for the shared memory
model.

To transpose the matrix, each processor broadcasts in turn its data to all the other processors.
This requires a total communication time of

* rt
2

TBC,,,,,, k(r + n2 kr + "2

Hence the total time + +

for performing one half step of Alternating Direction Method. /

"SI 7!

, wt



--.. ~- % -. . . . . .- . X ~ - . - - N - . ~- . .-

Page 3

• ,6 3 4

2 3 4 1

3 4 1 2

4 1 2 3

Figure 1: Domain decomposition and assignment of the unit
square into 4 processors.

Observe that neither of the above two models achieves a reasonable speed up when k increases
because of the limiting term n2 in the communcation cost. This is the source of the belief that
Alternating Direction Methods do not parallelize well.

4. Alternating Direction Methods on a multiprocessor ring

In the ring architecture the k processors are arranged in a ring and each processor can commu-
nicate with its two nearest neighbors. It is assumed throughout that the processors are numbered
so that processor numbered i is connected to processors nubered i + 1 and i - 1 modulo k. In order
to efficiently implement the algorithm, we will first assign the grid points such as to minimize data
communication costs. The assignment, which is described in Figure 1 for a ring of k = 4 processors,
will essentially avoid transposing the data at each half step.

*This assignment results in each of the tridiagonal systems (2.2), being split into k equal parts,
one part per processor. We consider the cost of the half step involving the sweep in the x-direction.

* Looking at the leftmost column of subsquares in Figure 1, each of the k processors of that column
• .-. can start performing the forward sweeps simultaneously on the n/k tridiagonal systems that it

holds. Thus, the sweep eliminates the variables horizontally from left to right. When the boundary
of the first subsquare is reached, each processor sends to its right neighbor in the figure the data that
is necessary for that processor to continue its forward sweep on the second part of the tridiagonal
matrix, i.e., the processor numbered j sends to its neighbor numbered (j+ 1) Mod k the (j- 1) 1+ 1
to P rows of the tridiagonal system. The forward sweep can now be pursued on the second column
of subsquares, and this process is repeated until the forward sweep is completed on the variables
of the last column of subsquares. The backward sweep is accomplished in a similar fashion except
that we proceed from right to left. The half step in the y direction is performed similarly, with the

1 forward sweep proceeding from bottom to top and the backward sweep from top to bottom. We
observe that no processor is idle at any time. It is clear that the time to perform the arithmetic
operations is again of the form:

n 8n 8n 2

TRA6rih =-

When we cross an interface in the forward sweep, we must transfer the pivot row plus the
corresponding element of the right hand side of each of the n tridiagonal systems in each processor
numbered j to the processor numbered (j+ 1) Mod k. These I/O operations can be done in parallel
for each of the processors on the same column. A total of k - I interfaces must be crossed. For the
backward sweep, we transfer only one elemt it of the current solution per system. Therefore:

TRComm (k)- r + (k- 1) (+ kb 2(k - 1)r-+ T+
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Thus, the total execution time comes to

4n SO 2TR(k) = 2(k - 1)r + + -ts

b + 5

Clearly, the time for solving in the other direction is identical.

We observe that with increasing k the arithmetic time decreases while the communication time
increases linearly. The function TR(k) has a minimum which is achieved for

2n

and the corresponding optimal time is linear in n:

TR,opg ,: 4 ( 2 f + n.

Thus by an appropriate choice of algorithm on the ring, with O(n) processors we can achieve an
O(n) speed-up contradicting the conventional wisdom.

40
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